Call an Rcpp function within a doParallel call
Source:R/mean_parallel_compute.R
mean_parallel_compute.Rd
Constructs an example showing how to use foreach
, iterators
, and
doParallel
to perform a parallel computation with a C++ function written
using Rcpp.
Usage
mean_parallel_compute(
n,
mean = 0,
sd = 1,
n_sim = 1000,
n_cores = parallel::detectCores()
)
Arguments
- n
Number of Observations
- mean
Center of Normal Distribution
- sd
Standard Deviation of Normal Distribution
- n_sim
Number of Simulations to Run
- n_cores
Number of CPU cores to use in parallelization task.
Details
The mean_parallel_compute()
function performs a bootstrap computation in
parallel of a mean value from the normal distribution.
Examples
# Compute the mean on 1000 observations with 50 replications across
# 2 CPUs.
mean_parallel_compute(1000, n_sim = 50, n_cores = 2)
#> [,1]
#> result.1 0.0081907230
#> result.2 -0.0227310386
#> result.3 0.0833780119
#> result.4 0.0005899353
#> result.5 -0.0000853346
#> result.6 -0.0327431289
#> result.7 0.0313063607
#> result.8 -0.0132872960
#> result.9 -0.0008703888
#> result.10 -0.0029701045
#> result.11 -0.0113345571
#> result.12 0.0145220118
#> result.13 0.0685993451
#> result.14 0.0399331610
#> result.15 -0.0154124854
#> result.16 0.0089251800
#> result.17 0.0002057858
#> result.18 0.0018280584
#> result.19 0.0544559560
#> result.20 0.0072396343
#> result.21 0.0402053029
#> result.22 -0.0315692192
#> result.23 -0.0363339734
#> result.24 -0.0646060850
#> result.25 0.0921888940
#> result.26 0.0222359371
#> result.27 -0.0199960756
#> result.28 -0.0083380486
#> result.29 -0.0625709861
#> result.30 0.0310027787
#> result.31 0.0145047582
#> result.32 0.0032922893
#> result.33 -0.0127891557
#> result.34 0.0154606923
#> result.35 -0.0372417515
#> result.36 0.0022360223
#> result.37 0.0629044804
#> result.38 -0.0144444468
#> result.39 0.0257686380
#> result.40 -0.0171293990
#> result.41 -0.0148242625
#> result.42 -0.0246986810
#> result.43 -0.0093508519
#> result.44 0.0494902777
#> result.45 0.0130628755
#> result.46 -0.0450779725
#> result.47 0.0560766682
#> result.48 0.0033460164
#> result.49 0.0303747237
#> result.50 -0.0151535632